avg ps Thumb sm portrait 01
Andreas Geiger (Project leader)
Max Planck Research Group Leader
ps Thumb sm petergehler copy
Peter Vincent Gehler (Project leader)
Research Group Leader
ps Thumb sm thumb varun
Varun Jampani
Ph.D. Student
ps Thumb sm thumb chaohui
Chaohui Wang
Alumni
5 results

2015


Thumb md geiger
Joint 3D Object and Layout Inference from a single RGB-D Image

(Best Paper Award)

Geiger, A., Wang, C.

In German Conference on Pattern Recognition (GCPR), 9358, pages: 183-195, Lecture Notes in Computer Science, Springer International Publishing, 2015 (inproceedings)

Abstract
Inferring 3D objects and the layout of indoor scenes from a single RGB-D image captured with a Kinect camera is a challenging task. Towards this goal, we propose a high-order graphical model and jointly reason about the layout, objects and superpixels in the image. In contrast to existing holistic approaches, our model leverages detailed 3D geometry using inverse graphics and explicitly enforces occlusion and visibility constraints for respecting scene properties and projective geometry. We cast the task as MAP inference in a factor graph and solve it efficiently using message passing. We evaluate our method with respect to several baselines on the challenging NYUv2 indoor dataset using 21 object categories. Our experiments demonstrate that the proposed method is able to infer scenes with a large degree of clutter and occlusions.

pdf suppmat video project DOI Project Page Project Page [BibTex]

2015

pdf suppmat video project DOI Project Page Project Page [BibTex]


Thumb md untitled
Efficient Facade Segmentation using Auto-Context

Jampani, V., Gadde, R., Gehler, P.

In Applications of Computer Vision (WACV), 2015 IEEE Winter Conference on, pages: 1038-1045, IEEE, WACV,, January 2015 (inproceedings)

Abstract
In this paper we propose a system for the problem of facade segmentation. Building facades are highly structured images and consequently most methods that have been proposed for this problem, aim to make use of this strong prior information. We are describing a system that is almost domain independent and consists of standard segmentation methods. A sequence of boosted decision trees is stacked using auto-context features and learned using the stacked generalization technique. We find that this, albeit standard, technique performs better, or equals, all previous published empirical results on all available facade benchmark datasets. The proposed method is simple to implement, easy to extend, and very efficient at test time inference.

website pdf supplementary IEEE page link (url) DOI Project Page [BibTex]

website pdf supplementary IEEE page link (url) DOI Project Page [BibTex]

2014


Thumb md pami
3D Traffic Scene Understanding from Movable Platforms

Geiger, A., Lauer, M., Wojek, C., Stiller, C., Urtasun, R.

IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 36(5):1012-1025, published, IEEE, Los Alamitos, CA, May 2014 (article)

Abstract
In this paper, we present a novel probabilistic generative model for multi-object traffic scene understanding from movable platforms which reasons jointly about the 3D scene layout as well as the location and orientation of objects in the scene. In particular, the scene topology, geometry and traffic activities are inferred from short video sequences. Inspired by the impressive driving capabilities of humans, our model does not rely on GPS, lidar or map knowledge. Instead, it takes advantage of a diverse set of visual cues in the form of vehicle tracklets, vanishing points, semantic scene labels, scene flow and occupancy grids. For each of these cues we propose likelihood functions that are integrated into a probabilistic generative model. We learn all model parameters from training data using contrastive divergence. Experiments conducted on videos of 113 representative intersections show that our approach successfully infers the correct layout in a variety of very challenging scenarios. To evaluate the importance of each feature cue, experiments using different feature combinations are conducted. Furthermore, we show how by employing context derived from the proposed method we are able to improve over the state-of-the-art in terms of object detection and object orientation estimation in challenging and cluttered urban environments.

pdf link (url) Project Page [BibTex]

2014

pdf link (url) Project Page [BibTex]

2013


Thumb md zhang
Understanding High-Level Semantics by Modeling Traffic Patterns

Zhang, H., Geiger, A., Urtasun, R.

In International Conference on Computer Vision, pages: 3056-3063, Sydney, Australia, December 2013 (inproceedings)

Abstract
In this paper, we are interested in understanding the semantics of outdoor scenes in the context of autonomous driving. Towards this goal, we propose a generative model of 3D urban scenes which is able to reason not only about the geometry and objects present in the scene, but also about the high-level semantics in the form of traffic patterns. We found that a small number of patterns is sufficient to model the vast majority of traffic scenes and show how these patterns can be learned. As evidenced by our experiments, this high-level reasoning significantly improves the overall scene estimation as well as the vehicle-to-lane association when compared to state-of-the-art approaches. All data and code will be made available upon publication.

pdf Project Page [BibTex]

2013

pdf Project Page [BibTex]

2012


Thumb md screen shot 2012 06 25 at 1.59.41 pm
Pottics – The Potts Topic Model for Semantic Image Segmentation

Dann, C., Gehler, P., Roth, S., Nowozin, S.

In Proceedings of 34th DAGM Symposium, pages: 397-407, Lecture Notes in Computer Science, (Editors: Pinz, Axel and Pock, Thomas and Bischof, Horst and Leberl, Franz), Springer, August 2012 (inproceedings)

code pdf poster Project Page [BibTex]

2012

code pdf poster Project Page [BibTex]