Header logo is avg
Group Talks
  • Carsten Rother
  • MRZ seminar room

In this talk I will present the portfolio of work we conduct in our lab. Herby, I will present three recent body of work in more detail. This is firstly our work on learning 6D Object Pose estimation and Camera localizing from RGB or RGBD images. I will show that by utilizing the concepts of uncertainty and learning to score hypothesis, we can improve the state of the art. Secondly, I will present a new approach for inferring multiple diverse labeling in a graphical model. Besides guarantees of an exact solution, our method is also faster than existing techniques. Finally, I will present a recent work in which we show that popular Auto-context Decision Forests can be mapped to Deep ConvNets for Semantic Segmentation. We use this to detect the spine of a zebrafish, in case when little training data is available.

Organizers: Aseem Behl


  • Bogdan Savchynskyy
  • Mrz Seminar Room (room no. 0.A.03)

We propose a new computational framework for combinatorial problems arising in machine learning and computer vision. This framework is a special case of Lagrangean (dual) decomposition, but allows for efficient dual ascent (message passing) optimization. In a sense, one can understand both the framework and the optimization technique as a generalization of those for standard undirected graphical models (conditional random fields). We will make an overview of our recent results and plans for the nearest future.

Organizers: Aseem Behl


Bipartite Matching and Multi-target Tracking

Talk
  • 22 July 2016 • 12:00 12:45
  • Anton Milan
  • MRZ Seminar Room

Matching between two sets arises in various areas in computer vision, such as feature point matching for 3D reconstruction, person re-identification for surveillance or data association for multi-target tracking. Most previous work focused either on designing suitable features and matching cost functions, or on developing faster and more accurate solvers for quadratic or higher-order problems. In the first part of my talk, I will present a strategy for improving state-of-the-art solutions by efficiently computing the marginals of the joint matching probability. The second part of my talk will revolve around our recent work on online multi-target tracking using recurrent neural networks (RNNs). I will mention some fundamental challenges we encountered and present our current solution.