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Abstract

In this paper we present a new “one-shot” method to

reconstruct the shape of dynamic 3D objects and scenes

based on active illumination. In common with other related

prior-art methods, a static grid pattern is projected onto

the scene, a video sequence of the illuminated scene is cap-

tured, a shape estimate is produced independently for each

video frame, and the one-shot property is realized at the ex-

pense of space resolution. The main challenge in grid-based

one-shot methods is to engineer the pattern and algorithms

so that the correspondence between pattern grid points and

their images can be established very fast and without un-

certainty. We present an efficient one-shot method which ex-

ploits simple geometric constraints to solve the correspon-

dence problem. We also introduce De Bruijn spaced grids,

a novel grid pattern, and show with strong empirical data

that the resulting scheme is much more robust compared to

those based on uniform spaced grids.

1. Introduction

The problem of estimating the shape of 3D objects and

scenes from images has been studied since the early days

of computer vision. A common approach to this problem

is to use controlled illumination such as structured lighting,

in which a projector is used to illuminate a 3D object with

one or more special patterns and a camera is positioned to

observe it. Most early works follow a temporal approach:

multiple patterns are projected consecutively onto a static

object and a camera captures an image for each projected

pattern. These methods require the object not to move while

the multiple patterns are being projected and the images be-

ing captured. They fail if the object moves or the scene

changes during the sequence. To be able to scan dynamic

objects and scenes, methods that recover depth informa-

tion for each frame are needed. This property requires that
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Figure 1: (a) A typical 3D object, (b) input image, (c) 3D

reconstruction of the object, (d) 3D reconstruction after tex-

ture mapping.

the number of patterns projected be reduced to one static

pattern, in which case all the information is transmitted in

the spatial domain. These are the so-called one-shot meth-

ods, and the method introduced in this paper is one of these

methods. We use a single grid pattern and present an effi-

cient algorithm to recover depth information from a single

camera image. We also propose a new pattern, which we

call De Bruijn spaced grids and show empirically that it in-

creases the robustness of reconstruction significantly. Fig-

ure 1b shows a typical input to our system and Figure 1c

shows 3D reconstruction of the object.

2. Related Work

Since a high variety of structured light approaches have

been proposed to this day, we will only discuss some of the

most relevant ones here. A comprehensive assessment is

presented in [12, 1] by Salvi et al.

One of the first temporal structured light systems was



proposed by Posdamer and Altschuler [7], where the col-

umn number for projector columns are encoded in binary

and consecutive patterns are projected over time, each cor-

responding to a bit plane. Note that to resolve M columns,

one needs to project logM patterns. In [6], Inokuchi et al.

improve this by suggesting Gray codes which are more ro-

bust to decoding errors compared to simple binary encod-

ing. More recently, Zhang and Huang demonstrated that

real time reconstruction of dynamic shapes using a temporal

approach is indeed possible at the expense of special hard-

ware [15]. Note that here, we aim to propose a system using

only off the shelf equipment such as a typical DLP projector

and a color camera.

There has also been much work in purely spatial ap-

proaches. Zhang et al. [14] use a sequence of stripes with

different colors. The transitions between colors in the se-

quence is a De Bruijn sequence which has the windowed

uniqueness property, i.e. each window of size n in the se-

quence is unique. Other works include M-arrays [13], [12]

which are two dimensional codes that have similar proper-

ties. Most of these approaches are highly sensitive to noise

and require sophisticated image processing as they use com-

plex illumination patterns. Furthermore, most of them rely

heavily on color and therefore require accurate color cali-

bration [3].

Ru and Stockman [10] suggest using a grid pattern (a bi-

nary pattern consisting of vertical and horizontal lines) and

show that the problem is simplified greatly. The observed

grid in the camera is matched to the projected pattern by ex-

ploiting a number of geometric and topological constraints

and global 2D optimization. A major drawback of the ap-

proach is that the detected grid points are numbered with

respect to a reference point, i.e. relative numbering. This

necessitates that at least a patch of the pattern be extracted

perfectly since in the case of undetected or spurious grid

points, the algorithm will fail. Proesmans et al. [9, 8] also

use a grid pattern however, present a more efficient solu-

tion. Similarly, the algorithm employs relative numbering

of the grid pattern and requires that most of the pattern be

recovered well.

Recently, Kawasaki et al. [5, 4] proposed a colored grid

pattern where vertical and horizontal lines are of differ-

ent colors. Unlike most other grid based approaches, their

method does not rely heavily on image processing and is

robust against undetected grid points as it does not assume

relative ordering. Their solution includes performing singu-

lar value decomposition (SVD) on a large and very sparse

matrix, which is an expensive operation and may be numer-

ically inaccurate. Moreover, the algorithm may fail to con-

verge to the correct reconstruction in some cases due to in-

stabilities discussed in [5]. The authors suggest irregularly

spaced grid patterns, which indeed increases the stability,

however, does not guarantee correctness.

Figure 2: The system setup

In this paper, we use a grid pattern similar to the one

used by Kawasaki et al., with horizontal and vertical lines

of different colors, but to simplify the search for correspon-

dences between projected pattern crossings and pixels in

the captured images we present an efficient algorithm per-

forming safe propagation of correspondences by exploiting

very simple geometric constraints, followed by a 1D search.

The algorithm does not assume local smoothness and can

handle undetected grid points or lost patches of the grid,

a deficiency in most grid based approaches. Furthermore,

we introduce De Bruijn spaced grids, which are grid pat-

terns with spacings that follow a De Bruijn sequence, to

make the search much more robust compared to using uni-

formly spaced grid patterns. This assures the stable and

correct reconstruction of even small patches of grid points.

Our novel formulation, which in addition to the De Bruijn

spaced grid, significantly reduce the cost of searching for

correspondences, results in an implementation which pro-

duces results of quality comparable to what the state of the

art one-shot scanning methods produce.

3. Overview of the Approach

In this paper, we present a structured light approach con-

sisting of a data projector and a single color camera, as

shown in Figure 2. Both of which are calibrated with re-

spect to a world coordinate system. The projector projects

a known static grid pattern onto the 3D surface. Since the

projected pattern is static, we could also use a much simpler

and compact slide projector. An image of the object illumi-

nated by the projected grid and captured by the camera is

used to determine the depth information of points illumi-

nated by grid crossings and observed by the camera. Pro-

ducing the correct depths depend on being able to solve the

so-called correspondence problem. Matching pairs of fea-

tures in the camera and projector images need to be identi-

fied, as in the perspective of stereo vision [10]. Note that

after correspondences are established, triangulation is triv-

ial and depth information can be obtained easily.

An exhaustive search for the correspondences of grid

points observed by the camera is intractable. However, us-

ing a pattern which disclosures spatial neighbor information

for all the feature points, e.g. a grid pattern, the correspon-

dence problem for the whole grid is simplified to identify-



(a) (b)

Figure 3: (a) A grid pattern, (b) two separate grid networks

composed of captured intersections.

ing the correspondence for a single grid point, i.e. all grid

points in a network can be uniquely identified based on a

single correspondence. This can be done efficiently without

assuming relative ordering of grid points and by exploiting

simple geometric constraints. This will be explained in de-

tail in Section 4.2.

At first, finding a single correspondence might seem to

require a search through the whole grid points in the pro-

jector image. However, exploiting the epipolar constraints,

the search space reduces to a single line. It shrinks even

further because we know the points could have come from

only grid crossings along the epipolar line.

Thus, using the described approach, the problem of re-

covering depth information is made as simple as obtaining

a correspondence between a detected point (grid crossing)

in the camera image and projected grid crossings along the

point’s epipolar line.

4. Reconstruction using a grid pattern

In the proposed system, the camera and the projector are

assumed to be calibrated. The projector projects a grid pat-

tern, composed of horizontal blue lines and vertical red lines

as shown in Figure 3a, onto the 3D object and the camera

is placed to capture the scene. A simple image segmenta-

tion process in the captured image, e.g., thresholding color

channels, is used to differentiate between the horizontal and

vertical stripes.

The stripes detected are combined to form an input to

the system - a 2D grid network. However, they, in general,

may not result in a connected grid network due to shad-

ows, occlusions and sharp depth discontinuities. The grid

network is typically composed of several connected com-

ponents. An example depicting this is given in Figure 3b.

Our approach solves the correspondence problem for each

grid network connected component independently. In this

section, we only explain the steps of our method for solving

a single connected grid network. Without loss of generality,

the same steps can be applied to all grid networks indepen-

dently for a complete 3D surface solution. The steps of the

proposed approach is as follows:

1. Pick a grid point in the network. Using its epipolar

line, find possible candidates for correspondence in the

projector image.

2. For each candidate, propagate the correspondence to

all grid points in the network. (This step provides a set

of candidate solutions for a given 2D grid network.)

3. Choose the solution which matches the projected grid

best via a 1D search

As for the notation used in this section, we assume all image

measurements refer to the homogeneous normalized coordi-

nates because the calibration is known for both camera and

projector.

4.1. Finding candidates for correspondence

A grid pattern reduces the correspondence problem to

the identification of a single correspondence. Nevertheless,

the search for a single correspondence may still be costly

considering the high number of grid points in the projec-

tor image. This motivates us to exploit geometrical rela-

tions between the camera and projector images to reduce

the search space.

Assuming that the world coordinate system is placed

at the optical center of the camera and ignoring intrinsic

parameters, the equation of the projection of a 3D point

p = (p1, p2, p3)
t onto the normalized camera image point

u = (u1, u2, 1)t is

λu = p (1)

We define another coordinate system at the optical center

of the projector for convenience and denote projector image

point as s = (s1, s2, 1)t. The relation between u and s is

µs = λRu + T (2)

where both λ and µ are unknown scalar values, R is the

rotation matrix and T is the translation vector which define

the coordinate transformation between the two coordinate

systems.

By eliminating the unknown scalars λ and µ from equa-

tion (2), we retrieve the epipolar line L of the camera point

u in projector image as

L(u) = {s : lts = 0} (3)

where l = T̂Ru , and T̂ is the matrix representation of the

cross product with T .

Equation (3) says that a captured grid point u in the cam-

era image may correspond only to grid points on the epipo-

lar line L(u) in the projector image as shown in Figure 4.



Figure 4: A point u and its epipolar line L(u)

The grid points on the epipolar line L(u) provide a set of

possible candidates for correspondence for a given 2D grid

network.

4.2. Propagating a correspondence

Having obtained a list of correspondence candidates for a

grid point, we show that the rest of the points can be inferred

quite efficiently and without assuming relative ordering.

We begin by assuming that u came from a grid point s

which satisfies L(u). Note that s defines a single horizontal

line and a vertical line on the projector plane as seen in Fig-

ure 5. Subsequently, these lines and Op define horizontal

and vertical planes Πh(s) and Πv(s) in the projector coor-

dinate system as follows:

Πh(s) = {p : nh(s) · (Rp + T ) = 0} (4)

Πv(s) = {p : nv(s) · (Rp + T ) = 0} (5)

where the normals are defined as nh(s) = [0 − 1 s1]
t and

nv(s) = [−1 0 s2]
t.

We denote grid points horizontally linked to u as

uh−neighbors and points vertically linked as uv−neighbors.

Note that both uh−neighbors and uv−neighbors are lists of

grid points all linked to u.

An important observation is that uh−neighbors must have

come from Πh(s) and uv−neighbors from Πv(s). In other

words, we know uh−neighbors’s row correspondence and

uv−neighbors’s column correspondence. Given these, we

can now compute uh−neighbors’s vertical correspondence

and uv−neighbors’s horizontal correspondence easily by us-

ing 2, 4 and 5. Geometrically, this corresponds to intersect-

ing the epipolar line of the neighbor point with its known

correspondence, which is either a vertical or a horizontal

line in the projector image plane. An example is given in

Figure 6.

Figure 5: Two planes Πh(s) and Πv(s) defined by point u’s

correspondence s.

Figure 6: Let u
′ ∈ uh−neighbors. Intersecting the L(u′)

with the horizontal line yields the vertical correspondence.

As a result, we obtain both row and column correspon-

dences for u’s neighbors. For points that are not u’s hori-

zontal or vertical neighbors; once the correspondences for

the neighbors have been computed, they can propagate their

solution to their own neighbors. An efficient algorithm that

traverses each grid point at most once and guarantees that

every point in the grid network is given a correspondence is

presented in Algorithm 1.

4.3. Search for Correspondence

The propagation provides a set of solution candidates for

a given grid network. As a final step, we need to identify

the correct solution through the comparison of computed

grid points s
′ ∈ S′ , and the projected grid points s ∈ S on

the projector image, where S′ is the set of computed grid

points, and similarly S is the set of projected grid points.

Ideally, for the correct correspondence, the computed

grid points s
′ must appear exactly on the projected (dis-

crete) grid points s. However, this, in general, may not

be satisfied due to imperfections in calibration and image

processing. Provided that the noise level is not excessively

high, the location of a computed grid point s′ still provides a

good neighborhood which includes the true correspondence

s. Considering a computed grid point could move along any

direction due to 2D noise, we assume that s′ came from one

of its four closest discrete neighbors sneighbors(s
′). The er-

ror function is defined to be the minimum cost of choosing

either one of these neighbors. We expect correct choice s to



Algorithm 1 The Propagation Algorithm

1: {The correspondence for u denoted as (πv(u), πh(u))
is assumed to be s.}

2: πh(u)← Πh(s), πv(u)← Πv(s)
3: Q← u {Initialize queue Q with u}
4: while Q is not empty do

5: e← Q[1] {Get the first element from Q}
6: if πv(e) exists then

7: Compute πh(e)
8: πh(eh−neighbors)← πh(e)
9: Remove (Q ∩ eh−neighbors) from Q

10: Add (eh−neighbors \Q) to Q

11: end if

12: if πh(e) exists then

13: Compute πv(e)
14: πv(ev−neighbors)← πv(e)
15: Remove (Q ∩ ev−neighbors) from Q

16: Add (ev−neighbors \Q) to Q

17: end if

18: end while

satisfy the corresponding epipolar line of u
′. Note that u

′

is the camera image point corresponding to the computed

projector image point s′. Thus, a single cost is

dist(s′, sneighbors(s
′)) = min

s∈sneighbors(s′)
(|L(u′) · s|) (6)

which is defined to be the minimum Euclidean distance of a

discrete neighbor to the epipolar line L(u′). Summing this

distance metric for all the intersections, we get the error

function

E(u, s) =
∑

s
′∈S′

dist(s′, sneighbors(s
′)) (7)

which changes for various candidates s along the epipolar

line L(u). We choose the solution which minimizes the

error function.

5. De Bruijn Spaced Grids

As described in 4.3, the minimum of the energy func-

tion (7) is taken to be the solution. Thus, the shape of this

function affects to the robustness of the search. When us-

ing a regularly spaced grid, the function may not be sharply

peaked, i.e. may have multiple local minima close to the

global minimum. The error function for a small size set’s

(40 intersections) is given in Figure 7a. It is clearly seen that

for small patches, using uniformly spaced grids result in a

multiple significant peaks, which leads to unresolved ambi-

guities. In the presence of noise the search may result in a

wrong correspondence. An example is depicted in Figure

7b.

A similar argument is made in [5] and irregular spac-

ings are suggested to disturb the uniformity. The authors

use a pattern with uniformly spaced vertical lines and ran-

domly spaced horizontal lines. This indeed increases the

robustness of the search, however, does not guarantee cor-

rect convergence.

We suggest grid spacings that follow a De Bruijn se-

quence to assure correct convergence. A k-ary De Bruijn

sequence of order n is a cyclic sequence containing let-

ters from an alphabet of size k, where each subsequence

of length n appears exactly once. There are multiple De

Bruijn sequences for a given (k, n), each of length kn. The

choices of (k, n) were chosen empirically and are discussed

in Section 6.

We generate grid patterns where both the vertical and

horizontal spacings between the stripes follow a De Bruijn

sequence. Thus, a 2D patch consisting of n vertical spac-

ings and n horizontal spacings and containing (n+1)2 grid

crossings is unique in the whole grid pattern. This makes it

“theoretically impossible” for wrong correspondence can-

didates to give false alarms and assures that the correct can-

didate be the global minimum. Of course, in the presence of

calibration and image processing errors, one would expect

to see some insignificant local minima.

An example error function (for a set containing 40 inter-

sections) using De Bruijn spaced grids (n = 5, k = 3) is

given in Figure 7c. It can be observed that using De Bruijn

spaced grids yielded a much more robust error function, re-

sulting in a confident decision for making the correspon-

dence. The correct correspondence is depicted along the

epipole in Figure 7d.

6. Experiments and Results

Figure 2 shows the actual implementation of the scan-

ner. We used a 1024 x 768 DLP projector and a 1600 x

1200 CCD camera. We calibrated both the camera and the

projector using the Camera Calibration Toolbox for Matlab

[2]. The experiments were carried out under weak ambient

light.

To recover the vertical and horizontal stripes, we sim-

ply threshold the respective color channels in the camera

image. Then, we apply thinning to get the curves running

from the center of each stripe. Finally, we find individual

grid networks using connected component analysis. Note

that this may yield multiple connected networks as shown

in Figure 3b, which are handled independently as explained

in Section 4.

To obtain the De Bruijn sequences, we used an online

generator [11]. To decide on the parameters (k, n), con-

sider the two extreme cases: when k is large and n is small

and vice versa. In the first case, there will be many different

spacings which will eventually lead to large spacings since

the spacing alphabet is discrete. Thus, the reconstruction
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Figure 7: (a),(c) Typical values of the error function when

using uniformly spaced and De Bruijn spaced grids respec-

tively. Note the significant peak in 7c, (b),(d) the epipoles

of the points considered and possible solutions are identi-

fied with green dots for (a) and (b) respectively.

will get sparse. However, even a very small patch of the pat-

tern can easily be recovered since n is small. On the other

extreme, when k is small and n is large, the pattern will be

composed of a few large unique patches. Thus, reconstruc-

tion will require a small number of patches be identified

since only a few can be enough to cover a whole surface.

Note that one may not be able to reconstruct a surface if

the detected patches are smaller than the needed size. This

decreases the robustness to noise, depth discontinuities and

texture.

In our experiments, we want to stay robust and still ob-

tain a dense reconstruction. Empirically, we saw that k = 5
and n = 3 gave good results as almost all detected patches

were bigger than the needed size for unique identification

and since k is not very large, we did not sacrifice much on

reconstruction density.

The results for a static textured object is given in Figure

8. It can be seen that although the object has both color

and texture, it has been reconstructed very well. Another

static object example is given in Figure 1. Since the object

(Figure 1a) has sharp depth discontinuities and a lot of self

occlusion, five independent grid networks were extracted.

All of them were solved correctly as seen in Figure 1c.

As noted earlier, this algorithm can reconstruct dy-

namic shapes and scenes. To test this, we projected

our static pattern and took multiple images as the shapes

moved/deformed. Figure 9 shows results from a video of a

(a) (b)

Figure 8: Reconstruction results for a textured object. (a) a

pot, (b) the reconstruction after texture mapping.

(a) (b) (c)

Figure 9: Reconstruction of a person’s face. (a) a smiling

human face, (b),(c) the reconstruction of the face.

human face and Figure 10 shows results from a sequence in

which a hand moves.

7. Future Work and Conclusion

In this paper, we have demonstrated a novel “one-shot”

method to reconstruct 3D objects and scenes using a grid

pattern. Unlike most other grid based approaches, our algo-

rithm is robust to most forms of texture, color and depth dis-

continuities and does not require sophisticated image pro-

cessing. Furthermore, it is efficient as it exploits simple ge-

ometric constraints, employs fast traversal of the grid pat-

tern and also avoids global 2D optimization. We have also

introduced De Bruijn spaced grid patterns, which are grids

with spacings that follow a De Bruijn sequence. We have

shown with strong empirical data that the resulting scheme

is much more robust compared to those based on uniform

spaced grids.

A drawback of our approach, in fact all grid based ap-

proaches, is spurious connections in sharp depth discontinu-
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Figure 10: Reconstruction of a person’s hand as it closes. (a) an open human hand, (b) a closing human hand, (c) the

reconstruction of the open hand, (d) the reconstruction of the closing hand.

ities. We plan to solve this issue in the future by traversing

multiple paths to propagate solutions and comparing these

solutions to detect and remove wrong links. We also plan

to search for theoretical explanations and results regarding

De Bruijn spaced grid patterns. Finally, we would like to

implement this algorithm in real time as it shows great po-

tential for GPGPU implementation.
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