Motivation

- **GANs** are powerful but **hard to train**
- **Training dynamics** are not completely understood
- Recently, a variety of **techniques** have been proposed to **stabilize GAN training**
- For which training methods can we actually prove local convergence?

The Dirac GAN

GAN-objective:
\[L(\theta, \psi) = f(\theta \psi) + f(0) \]

Gradient vector field:
\[v(\theta, \psi) = \begin{pmatrix} -\psi f'(\theta \psi) \\ \theta f'(\theta \psi) \end{pmatrix} \]

Zero-centered Gradient Penalties

\[R_1(\psi) := \frac{\gamma}{2} \mathbb{E}_{p_D(x)} \| \nabla D_\psi(x) \|^2 \quad R_2(\theta, \psi) := \frac{\gamma}{2} \mathbb{E}_{p_W(x)} \| \nabla D_\psi(x) \|^2 \]

Assumption I: the generator can represent the true data distribution

Assumption II: \(f'(0) \neq 0 \) and \(f''(0) \leq 0 \)

Assumption III: the discriminator can detect when the generator deviates from the equilibrium

Assumption IV: the generator and data distributions have the same support near the equilibrium point (Nagarajan & Kolter, 2017)

Theorem: under Assumption I, II, III and some mild technical assumptions the GAN training dynamics for the regularized training objective are locally asymptotically stable near the equilibrium point

Proof (idea):
(builds on prior work by Nagarajan & Kolter, 2017)

\[\tilde{v}(\theta^*, \psi^*) = \begin{pmatrix} 0 \\ -K_{CG} \end{pmatrix} \begin{pmatrix} K_{DD} - K_{LD} \end{pmatrix} \]

- full column rank
- negative definite
- all eigenvalues have negative real part

Summary

- **Question:** under what conditions can we guarantee local convergence of GAN training?
- **Negative finding:** unregularized training of GANs and WGANs is not always locally convergent near the equilibrium point
- **Positive finding:** GAN training with instance noise or zero-centered gradient penalties is provably locally convergent in the realizable case
- **Experiments:** simple zero-centered gradient penalties yield excellent results for high-dimensional image distributions

Motivation

Which Training Methods for GANs do actually Converge?

Lars Mescheder1,2, Sebastian Nowozin3, Andreas Geiger1,2

1MPI-IS Tübingen, 2University of Tübingen, 3Microsoft Research

lars.mescheder@tue.mpg.de

2D-Experiments

Gaussian
Line
Circle
Four lines

GT
unregularized
WGAN-GP (nd=1)

WGAN-GP (nd=5)

R
1
R
2

Qualitative Results

Imagenet (128 x 128, 1k classes)

LSUN-bedroom (256 x 256)

CelebA-HQ (1024 x 1024)